
ReChannel: Describing and Simulating
Reconfigurable Hardware in SystemC
ANDREAS RAABE, PHILIPPA.HARTMANN, JOACHIM K. ANLAUF
Technical Computer Science, University of Bonn, Germany

With the on-going integration of (dynamic) reconfiguration into current system models, new methodologies and
tools are needed to help the designer during the development process. This article introduces a language extension
for SystemC along with a design methodology for describing and simulating dynamically reconfigurable systems
at all levels of abstraction. The presented library provides maximum freedom of description of reconfiguration
behaviour and its control, while featuring simulation of run-time configuration, removal and exchange of custom
modules as well as third-party IP-cores during the complete architecture refinement process. When designing at
RT-level the resulting hardware description can easily be synthesized by standard synthesis tools.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Hardware description languages;
B.6.3 [Logic Design]: Design Aids—Simulation; B.7.2 [Integrated Circuits]: Design Aids—Simulation

General Terms: Design, Languages
Additional Key Words and Phrases: Reconfigurable hardware, dynamic reconfiguration, SystemC, refinement,
simulation, hardware description

1. INTRODUCTION

To cope with the increasing complexity of recent system models, new methodologies and
tools have been developed in recent years [Wolf 2003]. The modelling at higher abstraction
levels at early design stages and the integration of external intellectual property (IP) is
becoming more and more important with respect to time-to-market.

In addition to being a hot topic in research, (run-time) reconfigurable systems are close
to their commercial breakthrough [Tredennick and Shimamoto 2003; Bouldin 2005]. Intro-
ducing reconfiguration properties into the system at a very early design stage is advisable.
Since use of run-time reconfiguration often is prohibitively expensive, deciding if it will
be integrated into a design needs to be done as early as possible in the design cycle. A
variety of platforms and models have been proposed [Compton and Hauck 2002], but still
tool support for modelling and synthesizing reconfigurable systems is somewhat limited,
especially when it comes to application-specific solutions.

For instance, the de-facto standard for system modelling at higher abstraction levels,
SystemC [Open SystemC Initiative (OSCI)], does not support changes to the system’s
module topology during simulation. This leads to difficulties in modelling of reconfig-
urable systems using this hardware description language (HDL). The RECHANNEL library,

Author’s address: {A. Raabe, P. Hartmann, J. Anlauf}, Technical Computer Science, Römerstr. 164, 53117
Bonn, Germany, philipp.hartmann@offis.de,{raabe,anlauf}@cs.uni-bonn.de
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2007 ACM 1084-4309/2007/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007, Pages 1–0??.

2 · Andreas Raabe et al.

which is introduced in this article, is an extension to SystemC, that overcomes these limi-
tations, without actually changing the underlying simulation kernel.

To model the different system topologies, that can occur in a reconfigurable design,
reconfigurable modules are “activated” and “deactivated” by conditionally intercepting the
communication between static and reconfigurable parts of the design. This is achieved
through the concept of portals (see Section 4.1). The use of portals allows the usage
of any, even custom-built SystemC channel in a reconfigurable context, which leads to a
highly flexible methodology for modelling reconfigurable systems.

Since the main modification of the system, that is to be extended with reconfigurability
aspects, takes place within the interconnection of different parts of the system – i.e. be-
tween static and reconfigurable parts – no changes to existing modules are required. This
allows inclusion even of third-party IP, where only the interface is available. Reconfigura-
tion properties, like configuration times, can be added to those modules using inheritance.

The remainder of this article is organised as follows: The next section gives a more
detailed insight into the objectives behind the presented approach while it is compared
to other existing work in the field of reconfiguration within the SystemC context in Sec-
tion 3. Section 4.1 introduces the portal concept and its applicability for custom chan-
nels is outlined. Creation of reconfigurable modules from static ones is described in Sec-
tion 4.2. Afterwards, Section 5 shows an application of RECHANNEL within a hardware
design on RT-level. It is demonstrated that using RECHANNEL does not impair simula-
tion time. Section 6 introduces advanced RECHANNEL techniques for portal construction,
puts RECHANNEL into context with the SystemC refinement strategy, and introduces the
RECHANNEL technique for more accurate reconfiguration timing estimation. In Section 7
conclusions are drawn and planned directions of further work are outlined.

2. OBJECTIVES

The main objectives, that led to the development of the RECHANNEL library are outlined
in this section. As already mentioned in the previous section, SystemC does not support
modelling dynamic reconfiguration directly. This is due to the fact, that changes to neither
the module hierarchy nor to the interconnection properties of a system are possible after
the simulation has started.

Therefore, the main goal of the RECHANNEL library is to enable modelling and simu-
lation of run-time reconfigurable systems – which obviously might change their hierarchy
and/or interconnection characteristics during run-time – with SystemC. To achieve most
flexible and powerful results, following important considerations were taken into account.

Independence of used SystemC kernel. Modelling and thus simulation of reconfigurable
systems should not require usage of a specially crafted or manipulated SystemC simulation
kernel. There are many commercially available tools (e.g. for co-simulation), that include
their own SystemC run-time implementation. Excluding their use, due to the reliance on a
non-standard simulation kernel, would be an unwanted limitation for the designer.

As a result, the RECHANNEL library has been designed to work with any SystemC
simulator, that conforms to the IEEE standard 1666 Open SystemC Language Reference
Manual [2005].

Re-using existing modules, IP and reconfigurability models. One of the major draw-
backs of most approaches (see Section 3) to integrating run-time reconfiguration into hard-
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

ReChannel: Describing and Simulating Reconfigurable Hardware in SystemC · 3

ware descriptions is, that most of them require changes to modules, that should be “re-
configurable” within the system. Since reconfiguration is neither necessarily initiated nor
controlled by such components itself, these changes are objectionable. Especially the usage
of third-party IP-cores might be impossible within those frameworks. Even the required
changes to existing (static) modules results in increasing development cost.

Integration into SystemC design flow. It is highly desirable to take possible (dynamic)
reconfigurability schemes into account already at early stages of a system’s design. There-
fore, the possibility to study a system’s behaviour in a reconfigurable context should be
possible at all levels of abstraction within the SystemC design flow. Additionally, refine-
ment of different modules (static and reconfigurable ones) should be possible indepen-
dently of the inclusion and refinement of the reconfiguration properties (like scheduling
techniques, development of a controller etc.) of the system. As a result, a language ex-
tension to SystemC, that allows modelling, simulation and refinement of a dynamically
reconfigurable system, needs to support any, even custom-built channels natively.

To take full advantage of the SystemC refinement methodology control of the reconfig-
uration process should be as flexible as possible. Using RECHANNEL, the designer is free
to model the controller as a module or even as a channel, so no limitation regarding the
system’s refinement is imposed. This is discussed in Section 4.3.

Synthesis. Still most systems are refined manually by a designer in order to provide
maximum utilization of available resources. Even if automated synthesis of reconfigurable
systems might lead to a shorter path to hardware, such an approach unavoidably imposes
design limitations to the system. Hence it should be possible to refine and synthesize the
system using standard techniques and tools independently of the reconfiguration properties.

3. RELATED WORK

Apart from specific description languages like JHDL [Bellows and Hutchings 1998], that
support reconfigurable systems directly, or system-level approaches, that use UML (e.g.
[Benkhermi et al. 2005]), several generic approaches [Schallenberg et al. 2004; Pelkonen
et al. 2003; Alisson V. De Brito et al. 2006] have been proposed to model reconfigurable
systems using SystemC. Additionally, SystemC, as a C++-based description language can
be used at higher abstraction levels to develop systems which include reconfigurable parts.
In this case, the modelling can be done using object-oriented techniques and avoiding the
limitations of SystemC with respect to dynamic reconfiguration.

The ReConLib [Schallenberg et al. 2004] library integrates interchangeability of differ-
ent behaviours using an object-oriented modelling approach. The underlying description
language OSSS+R is an extension of OSSS [Grimpe and Oppenheimer 2002], which itself
extends SystemC with synthesizable object-oriented features. The common interface of
several exchangeable components is modelled as an inheritance hierarchy and different al-
gorithmic behaviour is chosen through polymorphism. Specific reconfiguration properties
(like partial state preservation, timing, etc.) can be expressed with OSSS+R as well.

Since this approach is based on an existing SystemC extension itself, the possibility of
re-using existing SystemC modules is quite limited. The interface to the static parts of
the system consists of OSSS+R specific procedure calls. Additionally, the reconfigurable
components are not regular SystemC modules, but passive objects instead. As reasoned
in the previous section, this usually requires the adoption of existing algorithms to the

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

4 · Andreas Raabe et al.

OSSS+R methodology, and therefore the integration of external IP cores is not possible.
Within the ADRIATIC project (e.g. [Pelkonen et al. 2003; Tiensyrja et al. 2004]), the

reconfigurable modules are modelled as bus slaves with strict requirements to the interface
(read, write operations including an address). Several of these components are then com-
bined to a so called dynamically reconfigurable fabric (DRCF). This DRCF component is
used as a wrapper, that determines the required module and triggers the reconfiguration,
if the addressed module is currently not “loaded” into such a DCRF component. Several
use-cases have shown the usability of this approach (see [The Adriatic Consortium]).

The main limitation of the ADRIATIC approach is the restriction to the underlying inter-
faces. The target architecture needs a generic bus layout that fits into the supported inter-
face scheme. Although this might not require a full reimplementation of existing modules,
the limited communication model should not be necessary for a generic approach to design
reconfigurable systems.

Another recently proposed SystemC extension [Alisson V. De Brito et al. 2006], is based
on a modified simulation kernel. Basically, the modified kernel allows the explicit activa-
tion and deactivation of certain modules within a SystemC design. Since this approach
might reduce the number of fired events during the simulation, it can be assumed, that a
good simulation performance is achieved. On the other hand, as discussed in the previ-
ous section, need of a modified kernel is a major drawback. To the authors’ knowledge
no further detail (e.g. concerning simulation of reconfiguration timings) has been provided
yet.

4. THE RECHANNEL APPROACH

4.1 Modelling reconfiguration on all levels of abstraction

Having a unified way of modelling reconfiguration at all levels of abstraction is highly
desirable, not only because it is convenient, but since it simplifies data refinement as well
as structural refinement. Additionally, it is necessary to enable the designer to leave most
of the design untouched, when rendering parts of it reconfigurable. Especially inside the
reconfigurable modules no changes should be necessary. Since otherwise integrating third-
party IP, where only the interface is known, is simply impossible.

Nowadays hardware designers usually use buses to intercept communication between
static modules to let them appear reconfigurable. This is an easy and most intuitive way
to model that only one module out of a set of modules is currently able to communicate
via a certain channel. In this simple scheme the channel’s arbiter fills the task of a recon-
figuration controller. This approach is named dynamic circuit switching and was proposed
by [Lysaght and Stockwood 1996]. It comes in two different flavours: Firstly, the bus is
modelled as a channel and substitutes the original channel. Secondly, it is made a module
that connects to the original channel. Both are no completely satisfying solutions, since
some drawbacks come with them in practice:

High development effort. For every SystemC channel type, that is used between static
and reconfigurable modules, a custom “Reconfiguration Bus” (RecBus) has to be built from
scratch, since the functional properties of the channel can differ considerably. In general
the flexibility of such an approach will be very poor, if no extra effort is spent to allow
connection of a random number of reconfigurable modules.

Reconfiguration cost. The dynamic reconfiguration of a system can usually not be per-
formed instantaneously. The resulting delays might have an impact on the system’s run-
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

ReChannel: Describing and Simulating Reconfigurable Hardware in SystemC · 5

Portal

A

B

Fig. 1. Plugging a portal between a port and its channel allows interception of their communication. Binding
multiple ports of different modules to a portal allows switching data between them.

time behaviour or even its functional correctness. Hence they have to be considered during
development. With manually crafted RecBuses, the designer has to model the delays sep-
arately, which can be difficult and error prone.

Side effects. If modelled as a channel the RecBus needs to substitute the original chan-
nel. Hence, it needs to mimic the original channels behaviour, making it a full reimple-
mentation. In addition to adding the switching capability, this makes it a time-consuming
task even if simulation performance is ignored.

Describing the RecBus as a module connecting to the original channel unavoidably en-
forces that additional channels are used to connect the RecBus to the reconfigurable mod-
ules. This changes the system’s topology and is error prone, since it is not necessarily
clear which channel type is to be used or how it has to behave in case of reconfiguration.
Furthermore, plugging another channel into the communication will in most cases change
its timing behaviour, which might lead to unpredictable behaviour.

The next section introduces a way to intercept communication at the channel-to-module
border, that resembles a RecBus, but does not have the limitations described above. Por-
tals are introduced as a framework to facilitate construction of specialized switches be-
tween channels and modules that do not cause any changes in simulation timing (not even
delta-cycles) by forwarding the channel’s events and the reconfigurable modules’ channel
accesses on C++ language level.

The portals’ state is controlled by the reconfigurable modules it is connected to. Recon-
figuration delays, which are taken into account during simulation, can be modelled using
rc modules (see Section 4.2). The modules’ state itself is controlled through a special
simulation reconfiguration controller that can be used by the designer to model any custom
controller and is presented in section 4.3.

4.1.1 Using portals to intercept communication. A portal is a special switch, designed
to connect a static channel to a port of a reconfigurable module, see Figure 1.

During simulation, accesses to the corresponding port from within the reconfigurable
module are then forwarded to the static channel. Additionally, any required events, the
reconfigurable module is listening to (via sensitivity or dynamic wait() statements), is
forwarded from the static channel to the module. Multiple reconfigurable modules can be
bound to a single portal (Fig. 1). During simulation, the actual reconfiguration operations
(see Section 4.3) change the data-flow through the portals depending on the reconfiguration
state of the connected modules.

If all ports of a reconfigurable module are equipped with portals, no port can be trig-
gered from outside, if the module is inactive (not configured). Therefore, no outbound
traffic should occur any longer, since the module’s processes are no longer triggered. Nev-
ertheless, technically it is possible that a module keeps on triggering itself (for instance by

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

6 · Andreas Raabe et al.

my_module_rc mod; // instantiate two reconfigurable modules
my_module2_rc mod2;

sc_fifo< int > fifo; // instantiate (static) FiFo

rc_portal< sc_fifo_out<int> > portal;
// instantiate portal for sc fifo out<int> port

portal.static_port(fifo); // connect the static channel
// to portal (named binding)

portal.bind(mod1.out); // bind reconfigurable module’s ports to portal
portal.bind(mod2.some_other_out);

Listing 1. Integrating a portal into a design is done analogously to the integration of a
channel. Here the usage of a fifo portal is shown. The RECHANNEL library predefines
portals for the standard SystemC ports.

rc_module

Configuration
Properties

A

Algorithmic
Behaviour

A_rc

Fig. 2. Deriving from rc module and a static module A results a reconfigurable module A rc.

a member of type sc clock). In this case outbound traffic is suppressed and a warning is
reported to the designer.

For standard SystemC port types the corresponding portals are provided by the RECHANNEL
library. Their usage is exemplarily shown in Listing 1. So the common RECHANNEL user
will not need to construct portals himself.

Still, SystemC enables construction and usage of user-defined, possibly complex chan-
nels. Hence it is necessary to provide the user with an easy-to-use toolkit to devise portals
for those custom channels. An approach that not only enables construction of portals for
arbitrary channels but would also allow construction of a compiler that could do so is pre-
sented in Section 6.1.

4.2 Rendering own modules and third-party IP-cores reconfigurable

Still it is highly desirable to add reconfiguration features to the modules in question (i.e.
reset and handshaking behaviour). Additionally, a library adding dynamic reconfiguration
to the simulation without touching kernel code needs to add information and behaviour as
well. In C++, like in most object-oriented languages, adding new abilities is usually done
by inheritance. Hence the generic way to express, that a module A rc is of type A and of
type rc module (reconfigurable module) is to derive it from both (see Fig. 2).

Since SystemC itself makes intensive use of inheritance this should be quite a familiar
way of doing things for any SystemC user. Deriving A rc from rc module makes it a
module that can be registered with a reconfiguration controller (see Section 6.2), and (with
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

ReChannel: Describing and Simulating Reconfigurable Hardware in SystemC · 7

class A_rc: public rc_module, public A {
protected:
inline void rc_setup();
public:
A_rc(sc_module_name name_): A(name_) {
rc_init(); // Initialize reconfiguration

// behaviour of the module
rc_setup(); // call rc setup

}
};

Listing 2. Example of a manual generation of a reconfigurable module. Module A rc
is derived from rc module and static module A. The constructor starts the finite state
machine that takes care of the reconfiguration state of the module and calls rc setup()
to reset the module at start-up.

inline void A_rc::rc_setup() {
rc_reset<int>(i,0); // reset i to 0
rc_preserve<sc_signal<int > > (j); // preserve j

set_loading_time(sc_time(20,SC_MS)); // module needs 20
// milliseconds to load

set_activation_time((sc_time(1.5,SC_MS));
// and 1.5 milliseconds to activate

set_removal_time((sc_time(2,SC_MS)); // preserving variables takes some time
}

Listing 3. Implementation of the rc setup() method. In member function
rc setup() the integer member i is registered to be reset to zero and the member signal
j to be preserved during reconfiguration. Modelling of configuration times is split into
loading and activation delay.

RC_MODULE(A) {
rc_reset<int>(i,0); // reset i to 0
rc_preserve<sc_signal<int > > (j); // preserve j

//
set_removal_time(sc_time(2,SC_MS)); // preserving variables takes some time

}

Listing 4. A more convenient way of implementing a reconfigurable module using pre-
defined macros.

some necessary preparations, see Section 4.1) be reconfigured.
Still, there are some things to cope with. A SystemC module will keep its state, i.e.

its member variables will not be reset when removed and configured once again. A well
known problem is, that hardware behaves differently. If not explicitly saved the modules

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

8 · Andreas Raabe et al.

state is lost after reconfiguration. Therefore a special mechanism is necessary to obtain
correctness of simulation. As proposed in [Schallenberg et al. 2004] a feasible solution
to this is to demand explicit description of every variable’s behaviour. Therefore the key-
words rc preserve and rc reset are defined. Registering members to be preserved
or reset is done in a special setup method rc setup() (see Listing 2). If unspecified, a
variables behaviour is undefined and the designer has to take care for correctness by other
means, i.e. setting a reset signal of the module in question. In rc setup() the simulated
configuration and removal time of the module can be specified. Here we distinguish be-
tween the time to load the module into the FPGA’s configuration memory and the time to
actually activate it.

Last but not least, for the generation of a reconfigurable module it is necessary to call the
function rc init() that initializes all reconfiguration properties from within the mod-
ule’s constructor. To simplify this process the macro RC MODULE() can be used alterna-
tively. Listing 4 shows that a condensed and elegant description results.

4.3 Controlling Reconfiguration Simulation Control

Since portals can be connected to ports of reconfigurable modules, their reconfiguration
state depends on the states of the attached modules. The major advantage of this is that
the designer does not need to take care for every portals state individually; manipulating
module states suffices.

To take care of the simulation aspects of reconfiguration a control unit rc control is
necessary, that administrates the reconfigurable modules in the design and allows manipu-
lation of their reconfiguration states.

rc_control ctrl; // create control object

ctrl.add(mod_1+mod_2+mod_3+mod_4); // register four modules with
// reconfiguration simulation control

ctrl.add(mod_5); // register one more module

ctrl.load(mod_1); // load module 1

ctrl.activate(mod_1); // activate module 1

ctrl.activate(mod_2); // activate and load module 2

In order to enable the designer to model pre-fetching and variable preservation, load-
ing and activation of modules are separated functions. If a module is to be activated but
not loaded before, it is loaded automatically. Loading (or activating) a module takes at
least the loading (or activation) time specified in the modules rc setup() method (see
section 4.2). Removal and deactivation functions can be used analogeously.

Activation and deactivation can consume even more time if the modules state can not
be changed immediately. A module can not be activated for example if any of the portals
still has another active module attached to it. This second module needs to be deactivated
first. (There do exist some special cases where it is very valuable to have more than one
active module per portal, hence this is supported as well.) On the other hand a module will
not be deactivated as long as it has any blocking accesses pending on any of its ports. This
mechanism is implemented in a state machine within rc module. To enable the designer
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

ReChannel: Describing and Simulating Reconfigurable Hardware in SystemC · 9

...

... ...

Pipeline

Monitor

Input-Multiplexer

Output-Multiplexer

Transform

Pipeline

Control

Test

Pipeline

...

Transform

Pipeline

Control

Test

Pipeline

...

...

Pipeline

Stimulater

Reconfiguration

Controller

PrimType

(a) Reconfiguration was originally simulated with
multiplexers. If the reconfiguration controller signals
reconfiguration via the primType signal input and
output multiplexers switch between primitive tests.

...

Pipeline
Monitor

Portals

Portals

Transform

Pipeline
Control

Test
Pipeline

Transform

Pipeline
Control

Test
Pipeline

...

Pipeline
Stimulater

Reconfiguration
Controller

PrimType

Im
p

lic
it C

o
n
tro

l

rc_control

(b) Exchanging multiplexers against rc portals
simplifies the design. Portals connect to modules di-
rectly and control of the reconfiguration state is now
done implicitly via RECHANNEL statements.

Fig. 3. Intersection test design with two modules that are interchanged at run-time. Triangle-triangle and quad-
quad test consist of three submodules each.

to exploit or circumvent this functionality at his will RECHANNEL offers several recon-
figuration state manipulation functions in rc control, such as blocking (de-)activation,
non-blocking (de-)activation and forced (de-)activation. Blocking functions wait until the
according action is possible and return afterwards. Their non-blocking counterparts try if
the state change can take place and report if it did or not. The forcing functions change the
state without respect to any of the above mentioned constraints. Therefore they should be
used with great care, since unpredicted effects may result. Still, since one of the objectives
of RECHANNEL is to give maximum freedom to the designer these functions are provided
since in some rare cases their usage might be inevitable when using third-party IP in a
reconfigurable environment.

5. A PERFORMANCE STUDY

To investigate on applicability and performance of RECHANNEL it was integrated into a
reconfigurable design. The simulated hardware is designed to test two graphical prim-
itives for intersection. The kind of primitives to be tested can be changed to provide
flexibility when used to accelerate physically-based simulations. It was developed within
the COLLISIONCHIP project funded by the Deutsche Forschungsgemeinschaft (DFG) for
high-speed collision detection using dedicated hardware. That makes it a real world exam-
ple. Fully synthesizable pipelines for triangle-triangle and quad-quad tests are contained

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

10 · Andreas Raabe et al.

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 13500

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
to

 c
om

pl
et

e
si

m
ul

at
io

n
in

 m
ic

ro
se

co
nd

s

Number of meassurement

RecBus
ReChannel

Fig. 4. 39610 pairs of triangles and quadrangles were checked for intersection interrupted by a reconfiguration.
This was repeated 1000 times. Using RECHANNEL for simulation is approx. 15% faster than using multiplexers.

within the design and can be switched according to the kind of data provided by the stim-
ulator. Originally the exchange of a triangle vs. triangle test against a quad vs. quad test
during run-time of the simulation was simulated with multiplexers (see Fig. 3(a)), which
can be interpreted as the simplest type of reconfiguration bus.

The design was deliberately chosen to be simple, to allow modeling without SystemC
extensions. Otherwise a comparison of simulation run-time would not have been possible.

Exchanging the multiplexers with rc portals simplifies the design (see Fig. 3(b)). As
described in Section 4.1 portals connect to modules directly, all signal that where originally
connecting the multiplexers to the pipelines are eliminated. A simple controller module
encapsulates switching to the requested collision test. Control of the activation state is
now done implicitly via RECHANNEL statements. No variables were reset to provide
comparability of run-time measurements between ReChannel and the multiplexer solution.
Modelling (re-)configuration times with RECHANNEL does not cause any extra cost in
speed of simulation as long as the course of calculation done by the simulated design is
not affected.1. But since this is an aspect of (re-)configuration that can not be grasped
by the multiplexer solution at all, this would spoil the comparison. Furthermore, using
RECHANNEL accuracy of the simulated timing behaviour is arbitrarily precise, depending
on accuracy of the platform description in use, as will be described in section 6.3. Hence,
respecting reconfiguration timings here would not result any extra information.

Comparing run-time of the simulation was done on a dual core Pentium D system at
3.20GHz with 1GB of main memory. 39610 pairs of triangles and quadrangles were
checked for intersection interrupted by a single reconfiguration. As can be seen in fig. 4

1This is a rare case, but can occur e.g. if the sequence of a tree traversal depends on certain calculation’s run-time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

ReChannel: Describing and Simulating Reconfigurable Hardware in SystemC · 11

this test was repeated 1000 times. Note that the design using RECHANNEL was simulat-
ing approximately 15% faster than the multiplexer solution. This is due to the overhead
caused by the channels from multiplexers to modules, which are removed by using the
RECHANNEL solution. Of course run-time of the simulation is strongly influenced by the
time consumption of the algorithmic behaviour within the different modules and frequency
of reconfiguration. But still this result shows that using RECHANNEL does not increase
simulation overhead with respect to time, but can be expected to run even faster than a
hand-crafted switch.

6. ADVANCED RECHANNEL FEATURES

6.1 Creating custom portals

As already stated in section 4.1 it is not possible to provide portals for custom build chan-
nels before they exist. Hence RECHANNEL provides the designer with an easy-to-use
toolkit to devise portals for custom channels.

Basically, two steps have to be performed: Firstly, it is necessary to implement an
accessor for the channel, that sets up the forwarding calls and declares the required
event finders. Secondly, a so called rc port traits template specialisation is required,
that specifies which interface/port/accessor type combination is needed for a given port.
For both tasks, the RECHANNEL library provides helper macros, where applicable.

Forwarding channel accesses. For every channel, a so called accessor object has to
be implemented. For the standard SystemC channels, these accessors are already part of
the RECHANNEL library.

The purpose of these accessor objects is to allow forwarding of channel accesses and
events. To enable forwarding of a channel access, blocking and non-blocking methods
have to be distinguished. For both types of channel methods, the RECHANNEL library
provides a macro, that takes care of the communication interception, if the calling module
is currently inactive. As a result, the re-implementation is reduced to the choice of the cor-
rect macro and its usage around the “real” channel call. Listing 5 shows an example of the
reimplementation of a blocking write function bl write. Additionally, the event finders,
i.e. the methods of the channel interface, that are used to access the channel’s events, have
to be re-implemented in the accessor as well. For convenience, the RECHANNEL library
provides macros for this as well.

Forwarding channel events. If the accessor is implemented for all corresponding ports
(either the generic sc port<my interface>, or a specific custom port e.g. my port)
of a given interface my interface, the implementation of the corresponding portal
rc portal<my port> is nearly ready.

All it takes, is the implementation of a template specialisation of some traits of the
given port. rc port traits encapsulate the correct types of the interface/port/accessor
combination and provide a static method, that specifies the events, that are to be forwarded.
An example is shown in listing 6. As a result, the portal for the given port is ready to use.
A slight limitation of this approach is the requirement of a fairly recent C++ compiler, that
supports partial template specialisation.

This way introducing run-time reconfiguration is easy on all levels of abstraction fea-
tured by SystemC, especially on Transaction-Level where mainly custom build channels
are used. Therefore the refinement process for custom build parts of the design can remain

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

12 · Andreas Raabe et al.

template< class T >
class my_accessor : // inherit from rc accessor template
public rc_accessor< my_channel_if<T> > {
RC_EVENT_FINDER(my_event); // declare event finder

public:
void bl_write(const T& data) { // enable forwarding of method

RC_BLOCKING_ACCESS(
this->channel->bl_write(data));

}
};

Listing 5. Create a custom accessor by implementing forwarding methods and declaring
required event finders.

template< class T >
class rc_port_traits< my_port<T> > {
public:
typedef my_channel_if<T> if_type; // required type information
typedef my_port<T> port_type;
typedef my_accessor<T> accessor_type;

static rc_event_list events() { // events to be forwarded
return (RC_EVENT(my_event));

}
};

Listing 6. Specify interface, port and accessor types to create a new portal for a given port.

unchanged, with the single exception that reconfiguration needs to be taken into account
(see section 6.2).

Additionally, this approach not only enables construction of portals for arbitrary chan-
nels but would also allow construction of a compiler that could do so. This is due to the
fact that portal construction does not depend on any creative coding of the designer, but
merely is a repetition of facts known to the compiler, but not available via C++ language
constructs (e.g. the type of the interface passed to sc port as template parameter).

6.2 Integrating reconfiguration into the refinement process

Introducing reconfiguration at a very early stage is advisable. Since use of run-time recon-
figuration often is prohibitively expensive, deciding if it will be integrated into the design
in question needs to be done as early as possible in the design cycle.

Functional Level. If done ”by the book”, a coarse approximation of the timing be-
haviour of a design is generated at timed-functional level. With RECHANNEL this can
be done easily for reconfiguration timings. In the rc setup() function the designer
can set the time a reconfigurable module needs to be configured into or removed from the
hardware (see Listing 3).

To control configuration on functional level it suffices to instantiate an object of type
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

ReChannel: Describing and Simulating Reconfigurable Hardware in SystemC · 13

Portal

Alternative Modules

...

BApplication

Specific

Reconfiguration

Controller

Static Design

Reconfiguration

Properties

A Reconfiguration

Properties

C Reconfiguration

PropertiesSimulation

Control

Fig. 5. An overview of a reconfigurable design on Transaction-Level. The reconfiguration controller is modelled
as a hierarchical channel. The reconfigurable modules remain in their scope.

rc control somewhere in the design and to register the reconfigurable modules with
it as described in Section 4.3. Now the modules configuration state can be manipulated
via function calls to rc control whenever necessary. If it turns out, that reconfiguration
requests need to be processed very fast or that most requests are coming from modules to be
implemented in hardware it might be necessary to implement a hardware reconfiguration
controller as well.

Since functional level modelling is mainly used to determine the module structure, a
possible next step is encapsulating the reconfiguration controlling into a controller module
instantiating rc control. This way requests for a certain module are modelled more
explicitly, since modules requesting use of a reconfigurable module need to inform the re-
configuration controller of this. Using RECHANNEL, the user is completely free to choose
a scheduling strategy and communication interface for the controller.

Transactional Level. A slightly different approach is to use a hierarchical channel to
encapsulate the controller (Fig. 5), when the refinement proceeds to Transaction-Level.
Since requesting use of a reconfigurable module can be regarded as a request to a (some-
times very slow) bus, standard techniques and tools for the investigation on TLM timing
behaviour can be used.

Different to other approaches, that implement the complete reconfigurable area or the
reconfigurable modules as buses the reconfigurable modules remain in their original scope
and the surrounding design has to be changed only very slightly. Obviously the topology
of a static design remains basically unchanged if some parts are made reconfigurable. As
discussed in Section 3, this is a major advantage.

Register Transfer Level / Synthesis. Evolving the dynamically reconfigurable design
into a synthesizable hardware description requires the refinement of the reconfigurable
modules as well as the refinement of the reconfiguration controller.

The different reconfigurable modules can be refined independently of the fact, that they
are used in a reconfigurable environment, since their algorithmic behaviour is not directly
affected by the reconfiguration. Standard SystemC synthesis tools can then be used to
translate the modules e.g. to VHDL to allow further processing in the vendor-specific syn-
thesis flow for dynamically reconfigurable systems. The only exception here is that the
designer has to care for the preservation of internal register values during removal and
reconfiguration, where needed.

Refining the controller to a synthesizable description can be done in two stages. Firstly,
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

14 · Andreas Raabe et al.

Application

Specific

Reconfiguration

Controller
Simulation

Control

Wrapper Faking

DRHW

User Defined

Interface

Hardware Specific

Interface

..
.

Fig. 6. The application specific part of the controller is refined to a pin-accurate model. Therefore a placeholder
module for the reconfiguration behaviour of the underlying hardware is necessary. This can be build easily using
the RECHANNEL simulation control rc control.

the hierarchical channel is changed into a module with a pin-accurate interface by standard
techniques (like adapter insertion and adapter inlining). Secondly, by encapsulating the
properties of the dynamically reconfigurable FPGA (DRFPGA) in use into another module.
The actual controller still contains the scheduling technique and the communication with
the rest of the design. It can now be refined to synthesizability.

The physical reconfiguration interface on the target hardware can now be described in a
behavioural fashion as a second module. It will not be synthesized but serves as a place-
holder for the real DRFPGA and the hardware environment (DRHW) for simulation pur-
poses. To mimic this behaviour rc control can be instantiated and its activation and
deactivation functions can be called from within the placeholder module (see Fig. 6). This
placeholder module can be re-used for all designs using the same underlying DRHW.

The synthesis of the overall dynamically reconfigurable system might require specific,
pin-accurate communication primitives (e.g. bus macros for Xilinx FPGAs) at the bor-
der of the static parts and the reconfigurable parts of the design. At these borders, the
SystemC/RECHANNEL model contains the portals, which can be easily replaced by the
appropriate communication primitives either manually or by a future preprocessing step
during the SystemC synthesis.

6.3 More Accurate Modelling of Reconfiguration Timings

Modelling reconfiguration delays using estimates as it is described in Section 4.2 is an
important first step in design space exploration. This way first information can be gained,
if the model still meets its performance constraints when dynamic reconfiguration is used.
But for a final decision in favour of reconfiguration, this will usually not suffice. More
precise timing information will be needed to fine tune algorithms or to decide which hard-
ware platform will be targeted. Therefore RECHANNEL offers a mechanism that allows
description of specialized simulation controllers that mimic reconfiguration timing of a
target platform.

Let A rc be an rc module and PlatformProperty to be a platform dependent
property type. PlatformProperty can now contain additional module properties that
depend on the target platform. (e.g. bitfile size if synthesized for the according platform).
Now A rc can be equipped with the platform’s properties. (e.g. specify its bitfile size).

A specialized simulation controller PlatformControl can now be derived from
rc control that calculates reconfiguration timings based on these module properties.
This can be done by overloading the takes time() member function of rc control.

A reconfigurable module can even be equipped with properties of multiple platforms and
hence behaves differently under control of different controllers. This enables investigation
ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

ReChannel: Describing and Simulating Reconfigurable Hardware in SystemC · 15

on the impact of different hardware platforms on the system’s performance.
Using platform dependent properties accuracy of reconfiguration timings only depends

on accuracy of the platform’s behaviour and the property estimation. The latter will usually
still be a guess. But estimating a circuit’s size for instance, will usually be much more
precise than directly guessing reconfiguration timings. Calculating reconfiguration timings
out of properties will usually not be very difficult. For example, for a Xilinx Virtex-4
FPGA, the bitfile size has to be divided by the block size (1 or 4, depending on whether
the internal configuration port (ICAP) is running in 32 Bit mode) and dividing the result
by the clock frequency the ICAP is running on.

7. CONCLUSIONS AND FURTHER WORK

Accurate modelling of reconfigurable systems is not supported by SystemC natively, since
the system’s module topology can not be manipulated at run-time. To overcome this lim-
itation, the RECHANNEL library was developed and presented in this article. It provides
a powerful methodology for describing reconfigurable systems, even including third-party
IP cores, and can be integrated into the refinement process most intuitively.

Furthermore, it neither requires any changes to the SystemC simulation kernel nor does
it depend on any other library. RECHANNEL is build exclusively with SystemC language
constructs conforming to the IEEE standard 1666 Open SystemC Language Reference
Manual [2005]. Therefore it is independent of the SystemC simulator used. The only hard
restriction is the necessity to use a compiler supporting partial template specialisation.

One major motivation to develop the presented methodology was the necessity for an
applicable SystemC reconfiguration simulation environment within the COLLISIONCHIP
project [Raabe et al. 2005;2006b;2006a]. Hence, applying the presented methodology to
further real world problems in hardware accelerated collision detection will be one of our
next steps. Exhaustive investigations on the simulation overhead caused by reconfiguration
will be included as well.

To further ease usage of RECHANNEL automated generation of accessors and thus of
portals will be included, as well as automated generation of reconfigurable modules from
static ones. Therefore a syntactic analysis of the processed design is necessary, which is
currently under development. Here, UNIWARE [Hartmann and Anlauf 2004] will be used
as an intermediate representation. A major step towards complete coverage of all SystemC
communication primitives will be the inclusion of exports into the framework.

Last but not least, the support for modelling mobility aspects – i.e. moving modules
within the design – is considered for incorporation into the RECHANNEL framework as
well.

ACKNOWLEDGMENTS

We would like to thank our students B. Bales, T. Becker, T. Loraing, M. Nolden, R.
Reifenhäuser, U. Schuster, R. Thesen, and J. Wolf for their excellent work during the
implementation of the RECHANNEL library.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

16 · Andreas Raabe et al.

REFERENCES

ALISSON V. DE BRITO, ELAMR U. K. MELCHER, AND WILSON ROSAS. 2006. An open-source tool for
simulation of partially reconfigurable systems using SystemC. In IEEE Computer Society Annual Symposium
on Emerging VLSI Technologies and Architectures (ISVLSI’06). 434–435.

BELLOWS, P. AND HUTCHINGS, B. 1998. JHDL - An HDL for Reconfigurable Systems. In FCCM, IEEE
Symposium on FPGAs for Custom Computing Machines. 175.

BENKHERMI, I., BENKHELIFA, A., CHILLET, D., PILLEMENT, S., PRÉVOTET, J.-C., AND VERDIER, F. 2005.
System-Level Modelling for Reconfigurable SoCs. In 20th Conference on Design of Circuits and Integrated
Systems (DCIS). Lisboa, Portugal.

BOULDIN, D. 2005. Enabling killer applications of reconfigurable systems: Ersa keynote and introduction. In
ERSA, T. P. Plaks, Ed. CSREA Press, 7–16.

COMPTON, K. AND HAUCK, S. 2002. Reconfigurable Computing: A Survey of Systems and Software. ACM
Computing Surveys 34, 2.

GRIMPE, E. AND OPPENHEIMER, F. 2002. Aspects of Object Oriented Hardware Modelling With SystemC-
Plus. In System on Chip Design Languages. Extended papers: Best of FDL’01 and HDLCon’01. Kluwer
Academic Publ., 213–223.

HARTMANN, P. A. AND ANLAUF, J. K. 2004. On Actors and Objects – OOP in System Level Design. In
FDL’04 – Forum on Specification and Design Languages. Lille, France.

IEEE STANDARDS ASSOCIATION (”IEEE-SA”) STANDARDS BOARD. 2005. IEEE Std 1666 -2005 Open
SystemC Language Reference Manual.

LYSAGHT, P. AND STOCKWOOD, J. 1996. A Simulation Tool for Dynamically Reconfigurable Field Pro-
grammable Gate Arrays. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 4, 3, 381–390.

PELKONEN, A., MASSELOS, K., AND CUPAK, M. 2003. System-Level Modeling of Dynamically Reconfig-
urable Hardware with SystemC. Proceedings of International Symposium on Parallel and Distributed Pro-
cessing (Reconfigurable Architecturs Workshop).

RAABE, A., BARTYZEL, B., ANLAUF, J. K., AND ZACHMANN, G. 2005. Hardware Accelerated Collision
Detection — An Architecture and Simulation Results. In Design Automation and Test (DATE). IEEE Computer
Society, Munich, Germany, 130–135.

RAABE, A., HOCHGÜRTEL, S., ZACHMANN, G., AND ANLAUF, J. K. 2006a. Hardware-Accelerated Collision
Detection using Bounded-Error Fixed-Point Arithmetic. Journal of WSCG ’2006, 17–24.

RAABE, A., HOCHGÜRTEL, S., ZACHMANN, G., AND ANLAUF, J. K. 2006b. Space-Efficient FPGA-
Accelerated Collision Detection for Virtual Prototyping. In Design Automation and Test (DATE). Munich,
Germany, 206–211.

SCHALLENBERG, A., OPPENHEIMER, F., AND NEBEL, W. 2004. Designing for dynamic partially reconfig-
urable FPGAs with SystemC and OSSS. In Forum on Specification and Design Languages. Lille, France.

TIENSYRJA, K., QU, Y., ZHANG, Y., MIROSLAV, C., RYNDERS, L., VANMEERBEECK, G., MASSELOS, K.,
POTAMIANOS, K., AND PETTISALO, M. 2004. Systemc and ocapi-xl based system-level design for reconfig-
urable systems-on-chip. In Forum on Design Languages (FDL).

TREDENNICK, N. AND SHIMAMOTO, B. 2003. The Rise of Reconfigurable Systems. In Engineering of Recon-
figurable Systems and Algorithms, T. P. Plaks, Ed. CSREA Press, 3–12.

WOLF, W. 2003. A decade of hardware/software codesign. Computer 36, 4, 38–43.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, January 2007.

